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Abstract. The temperature dependence of the cyclotron resonance mass (CRM) of the magnetopolaron in
ZnCdSe/ZnSe multi-quantum wells with strong magnetic field is investigated theoretically using the Lee-
Low-Pines variational method. The contributions to the CRM due to the nonparabolicity of the conduction
band and the coupling of electron with both confined longitudinal optical and interface optical phonons
are considered. Results of our calculations are compared with the experimental data, and a qualitative
agreement is found over a large temperature range. We show that these three contributions complement
each other to determine the cyclotron mass as a function of the temperature.

PACS. 76.40.+b Diamagnetic and cyclotron resonances – 78.55.Et II-VI semiconductors – 72.10.Fk Scat-
tering by point defects, dislocations, surfaces, and other imperfections

1 Introduction

In recent years wide gap II–VI semiconductor heterostruc-
tures have attracted much attention mostly in light of
their potential for the development of opto-electronic de-
vices operating in the blue-green spectral region [1–4].
II–VI semiconductors are interesting materials also from
the viewpoint of the electron-phonon interaction, which
gives rise to a relatively large polaron effect.

Special attention is focused on the cyclotron-resonance
mass of an electron in II–VI compounds. It is interpreted
on basis of the electron-phonon interaction. The cyclotron
resonance mass can be obtained from the position of cer-
tain peaks in the magneto-optical absorption spectrum [5].
Recent progress in high magnetic field technology has pro-
vided the possibility to study cyclotron resonance over a
wide range of photon energies and temperatures. Several
works on the cyclotron resonance (CR) have been done
both experimentally [6–9] and theoretically [10–13] in the
3D and low dimensional systems. The temperature de-
pendence of the cyclotron resonance mass has been inves-
tigated theoretically by many authors, but the existing
theories are still controversial. Different theoretical meth-
ods applied have led to significantly different predictions
for the behavior of the cyclotron mass as a function of the
temperature.

Taking into account the interaction of an electron with
both bulk longitudinal-optical and interface-optical (IO)
phonons, Wei and Gu [13] have investigated the cyclotron
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mass of magnetopolaron in quasi-two-dimensional systems
at finite temperature using the generalized Larsen pertur-
bation theory method. The results show that the cyclotron
mass is a monotonic function of the temperature. However,
with the Green’s function method [12], the cyclotron res-
onance mass of interface magnetopolarons is shown to be
an increasing function of temperature when the magnetic
field is lower than a resonant magnetic field, but it is a de-
creasing function of the temperature when the magnetic
field is higher than a resonant magnetic field. A differ-
ent result as compared to the aforementioned tempera-
ture dependencies of the cyclotron mass was obtained by
extending Feynman’s polaron theory [14] to finite temper-
atures. With this theory it was found that with increasing
temperature the cyclotron mass first increases at low tem-
perature, subsequently reaches a maximum value at a cer-
tain temperature, and at still higher temperature starts to
decrease. For high magnetic fields the theoretical efforts
aimed at investigating the cyclotron resonance mass of
magnetopolaron have been carried out using the memory-
function formalism by Devreese and his associates [10,11].
This method is applied to interpret the experiments of
Miura and his co-workers in the bulk n-type CdS [6]. A
large amount of theoretical work has been done [15–17]
concerning the effects of interface phonons on the position
of the cyclotron resonance peak. More recently the reso-
nant magnetopolaron effect due to the interaction between
the electrons and the interface optical phonon modes were
observed experimentally [18].

In this work, using the modified Lee-Low-Pines
(LLP) variational method [19], we present a theoretical
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calculation of the magnetopolaron cyclotron resonance
mass at high magnetic fields with taking into account the
interaction of an electron with both confined longitudinal
optical (LO) phonons and interface optical (IO) phonons.
The calculations are performed for ZnCdSe/ZnSe multi-
quantum wells (MQWs) in order to interpret the experi-
mental data of Imanaka and Miura [9]. Our calculations
take into account the non-parabolicity of the conduction
band. This consideration leads to the following anisotropy
of the effective mass: the effective mass in the xy-plane is
affected by the non-parabolicity 2–3 times more than that
along the z-direction.

The present paper is organized as follows. In Section 2,
a modified Lee-Low-Pines variational technique is pre-
sented. Section 3 contains our numerical results. The con-
clusion is given in the last section.

2 Theoretical model

Within the effective-mass approximation, the Hamiltonian
of an electron in multi-quantum well system, interacting
with both the confined LO phonons and IO phonons, and
applied to a uniform magnetic field along the growth di-
rection (z-axis), is written as:

H = He +Hph +He−ph. (1)

Focusing on the nonparabolicity of the conduction band,
the electronic Hamiltonian He reads in the �k·�p the-
ory [20] as:

He =
(�P + e
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The potential vector �A is chosen in the symmetric gauge,
i.e. �A = B(−y, x, 0)/2. K = (kx, ky, kz) is the electron
wave vector. σ = (σx, σy, σz) are the Pauli spin matri-
ces and µB is the Bohr magneton. The nonparabolicity
parameters aij and their numerical values [21] are deter-
mined from a 14-band �k·�p calculation. To simulate the
effect of multiple wells, we take Vw(z) to be a periodic
one-dimensional rectangular-well potential.

Vw(z) =
{

0; −L
2 + n(L+ b) < z < L

2 + n(L+ b)
V0; L

2 + n(L+ n) < z < −L
2 + (n+ 1)(L+ b)

(3)
L is the well width, b is the barrier width, V0 is the bar-
rier height and n is an integer, while the second term in

equation (1) is the total Hamiltonian of the free phonon
field:

Hph = HLO +HIO, (4)
where

HLO =
∑

k,m,p

�ωLOa
+
m,p(k)am,p(k), (5)

is the Hamiltonian operator for confined LO-phonons,
a+

m,p(k)[am,p(k)] is the creation (annihilation) operator
for a LO phonon with frequency ωLO and k is the two-
dimensional projection on the xy-plane of the wave vec-
tor. The parity index, p = ±, refers to the miror symmetry
with respect to the plane z = 0, m is the quantum num-
ber related to the z-component of the LO-phonon wave
vector.

The Hamiltonian operator for IO-phonons is

HIO =
∑

q,σ,p

�ωσpb
+
σ,p(q)bσ,p(q), (6)

where b+σ,p(q)[bσ,p(q)] is the creation (annihilation) op-
erator for the IO-phonon with frequency ωσp and the
wave vector q, where σ = ± refers to the high- and
low-frequency IO phonon modes, respectively. p has the
same meaning as before. According to Wendler and Pech-
stedt [22], there are four interface phonon modes with fre-
quencies, ω++, ω+−, ω−+, ω−−.

The last term in equation (1) describes the interaction
Hamiltonian of an electron with different phonon modes:

He−ph = He−LO +He−IO. (7)

The first term corresponds to the electron-LO-phonon in-
teraction [23]
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, (9)

V is the crystal volume and a is the lattice constant. The
second term in equation (7) is the electron-IO phonon in-
teraction [24], given by:

He−IO =
∑

q,σ,p
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ωLO1(ωLO2) and ωTO1(ωTO2) are the longitudinal and
tranverse optical phonon frequencies respectively, for the
well (barrier) material.

We apply the variational technique developed by
Lee-Low-Pines, to calculate the eigenstates of the
Hamiltonain (1). We perform two unitary transforma-
tions [23]:

U1 =exp[−i
∑
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∑
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fm,p(k), f∗
m,p(k), gσ,p(q) and g∗σ,p(q) are the variational pa-

rameters, which are determined by minimizing the energy
of the system.

At finite temperature, we choose |Nm,p(k), Nσ,p(q)〉
as the wave function for describing the phonon state, in
which Nm,p(k) and Nσ,p(q) represent the number of LO
and IO-phonons, respectively. When the temperature is
lower than the room temperature, though the phonon fre-
quencies will decrease with increasing temperature, we
can still take them as constant because of the small rel-
ative change of the frequency [25]. Also, the energies of
the interaction between the electron and the phonons are
much smaller than the phonon energy except in the strong-
coupling case. Accordingly, we may assume that the eigen-
values of a+

m,p,kam,p,k and b+σ,p,qbσ,p,q in the phonon state
are approximately equal to the equilibrium values [26], i.e.
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where kB is the Boltzmann constant.
The wave function of the system is chosen far from the

resonance as follows:
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∏
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∏
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where φe(z, ρ) is the wave function of the electron mov-
ing inside of the MQW. The expectation value of the
Hamiltonian H with the trial wave function is:
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FLO and FIO are, respectively, the contributions of the
confined LO phonons and Interface phonons to the trans-
formed Hamiltonian.Kρ is the component of the electronic
wave vector in the xy-plane.



40 The European Physical Journal B

Iσ+ =

∫ π
2aUσ+

0

x cosh2(Uσ+xz)dx

ω2
σ+

(
2ξ2

1σ+ tanh
(

Uσ+xL

2

)
+ 2ξ2

2σ+

)
(1 + x2 + 2x2ησ+)3 cosh2

(
Uσ+xL

2

) , (32)

Iσ− =

∫ π
2aUσ−

0

x sinh2(Uσ−xz)dx

ω2
σ−
(
2ξ2

1σ− coth
(

Uσ−xL

2

)
+ 2ξ2

2σ−
)

(1 + x2 + 2x2ησ−)3 sinh2
(

Uσ−xL

2

) ; (33)

According to the consideration of Lee-Low-Pines, and
taking into consideration that only preferred direction in
the xy-plane is the direction of Kρ, we may introduce
parameters λ1 and λ2

∑
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(∂F )/(∂g∗σ,p(q)) = 0 are used to determine the expressions
of fm,p(k), f∗

m,p(k), gσ,p(q) and gσ,p(q)∗.
It is necessary to point out that we are interested only

in the analysis of slow electrons as observed in experiment,
namely, we can set Kρ ≈ 0. By putting fm,p(k), gσ,p(q)
and their conjugate formulas into equations (23, 24) and
expanding them to the first power of Kρ, λ1 and λ2 are
found on the form:
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ε0(ε∞), α and kLO(Uσp) are, respectively, the static (optic)
dielectric constant, the coupling constant of the electron-
LO-phonon interaction, and the polaron wave vector for
the LO-(IO-) phonons:
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After minimizing F with respect to fm,p(k) and gσ,p(q) we
obtained the effective Hamiltonian Heff (Heff = minF ).

Heff = H
′
e +

�
2

2m∗
e

K2
ρ(1 + λ2

1 + λ2
2 − 2λ1 − 2λ2)

+ Ve−LO(z) + Ve−IO(z), (37)

where H
′
e = He − �

2/(2m∗
eK

2
ρ). Ve−LO(z) and Ve−IO(z)

are the effective potentials induced by the interaction
between the electron and confined LO-phonons and
IO-phonons, respectively:

Ve−LO(z) = ηLO�ωLO − 4α�ωLO

LkLO

×
⎡

⎣
N
2∑

m=1,3,..

k2
LOcos2

(
mπz

L

)
[
(1 + 2ηLO)

(
mπ
L

)2 − k2
LO

] log
(

(1

+2ηLO)
(

mπ

LkLO

)2
)

+

N
2∑

m=2,4,..

k2
LOsin2(mπz

L )
[
(1 + 2ηLO)

(
mπ
L

)2 − k2
LO

] log
(

(1

+2ηLO)
(

mπ

LkLO

)2
)]

, (38)

Ve−IO(z) =
−3α
π

�ωLO

(
1
ε∞

− 1
ε0

)−1
[
∑

σ+

I1
�ω2

σ+

+

∑

σ−

I2
�ω2

σ−

]

+
S

4π2

∑

σ,p

Uσp

∫ π
2aUσp

0

ησp�ωσpdx, (39)



R. Charrour and D. Bria: Temperature dependence of the cyclotron mass in ZnCdSe/ZnSe multi-QWs 41
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In order to calculate the energies, the wave function of the
electron is chosen in the form:

φe(�r) = Ncf(z)gm,n(ρ, ϕ); (42)

Nc is the normalization constant, f(z) stands for the sys-
tem wave function in the nth well and the nth barrier (so-
lution of the periodic well) [27] and gm,n(ρ, ϕ) describes
the electron motion in the xy-plane in the presence of the
magnetic field:
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n is the radial quantum number (Landau-level index) n =
0, 1, 2, ... m is the angular quantum number m = 0, 1, 2, ...
and Lm

n+m(x) is the associated Laguerre polynomial of de-
gree (n+m) and order m
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affects the mass in the xy-plane, m∗
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w), 2–3 times more than that

along the z-axis, not only because two degrees of freedom
are concerned by Landau quantization, but also because
of the band anisotropy [28]. Pw(Pb) is the probability to
find the electron inside (outside) the well. m∗

w and m∗
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the electron effective mass in the well and in the barrier,
respectively. The band gap energy Eg is expressed as a
function of the temperature [29]
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The magnetopolaron energy is determined as follows:

Emn = 〈φe(z, ρ)|Heff |φe(z, ρ)〉. (52)

The cyclotron resonance mass can be obtained from the
position of certain peaks in the magnetooptical absorption
spectrum [5]. For that, we calculate the absorption coeffi-
cient and examine the variation of the peak position as a
function of temperature in ZnCdSe/ZnSe MQWs. In the
dipole approximation, the absorption coefficient α(ω) for
a linearly polarized electromagnetic wave in a medium of
refractive index n is given [30] by

α(ω) =
4π

ncm∗ωV

∑

f,i

|〈ψf |�ε· �P |ψi〉|2δ(Ef −Ei−�ω), (53)

�P and �ω are the electron momentum and the photon
energy, respectively. The polarization vector �ε defines the
orientation of the electric field of the linearly polarized
wave. The initial |ψi〉(occupied) and the final |ψf 〉(empty)
states of egenenergies Ei and Ef will be taken for the zero
and the first Landau levels Emn (50), respectively.

The δ-function is modelled by a narrow Lorentzian
function

δ(ω) → 1
π

Γ

ω2 + Γ 2
. (54)

We choose the width Γ to be equal to 5 meV.

3 Results and discussion

The numerical calculations have been performed for
ZnCdSe/ZnSe MQW with the following physical param-
eters [31]: m∗

b = 0.155m0, m∗
w = 0.140m0, ε0 = 8.7,

ε∞ = 5.73 and �ωLO = 31.7 meV.
The results presented in Figures 1 and 2 show the

strong temperature dependence of the induced potentials
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Fig. 1. The effective potential Ve−LO(z = 0) as a function of
temperature for L = 90 Å and b = 150 Å.

Fig. 2. The effective potential Ve−IO(z = 0) as a function of
temperature for L = 90 Å and b = 150 Å.

Ve−LO(z) (36) and Ve−IO(z) (37). Both potentials increase
with an increase of temperature, i.e., the self-trapping of
the polaron will be enhanced with increasing temperature.
We note that the augmentation of Ve−LO(z) is more pro-
nounced than that of Ve−IO(z).

For the measurement scheme used in reference [9],
where ω is fixed while the magnetic field varies, the cy-
clotron mass m* satisfies the relation

m∗

m∗
//

=
ωc

ω
(55)

where ωc is the cyclotron frequency, which corresponds to
the cyclotron resonance peak in the magneto-optical ab-
sorption spectrum (Fig. 3). This figure shows the influence
of the temperature on the optical absorption spectra. The
optical absorption coefficient is displayed versus the cy-
clotron frequency ωc for a fixed incident photon frequency
(�ω = 117 meV) and different values of the tempera-
ture. The figure shows that the absorption peak is a non-
monotonic function of the temperature. With increasing
temperature, the peak first moves towards stronger mag-
netic fields, while at higher temperature there appears a
shift towards weaker fields. This is still clearer in Figure 4,
which displays the peak cyclotron frequency ωc as a func-
tion of the temperature. From this curve (Fig. 4), we can
obtain m∗(T ) (Fig. 5) by means of the equation (53).

Fig. 3. Calculated magneto-absorption coefficient in
ZnCdSe/ZnSe multi-QWs versus the cyclotron frequency,
at the photon energy �ω = 117 meV, L = 90 Å, b = 150 Å and
various temperatures.

From our calculations, we remark that there is an
interplay between the electron-LO-phonon interaction,
the electron-IO-phonon interaction and the band non-
parabolicity of the conduction band. The effect of the
different scattering mechanisms on the cyclotron mass
can be, qualitatively, understood by analyzing the tem-
perature dependence of the corresponding contributions
to the transition energy (E1 − E0). This is at a certain
ωc, which provides the maximum of the absorption co-
efficient, for a fixed photon frequency. From the equa-
tion (53) m∗/m∗

// = ωc/ω = �ωc/�ω = (E1 − E0)/�ω,
we can see that an increase of (E1 − E0) results in an
increase of the cyclotron mass m*. Figures 1 and 2 give
a clear picture of the polaron effect contribution to the
energy (E1 − E0). We note that the induced potentials
Ve−LO(IO)(z) and (E1 − E0) have qualitatively opposite
behavior as a function of the temperature; namely: while
Ve−LO(IO) increases, the energy (E1 − E0) decreases. We
proved it numerically. At low temperatures T < 95 K,
the optical phonons are less sensitive to the temperature
fluctuation (see Figs. 1 and 2). This means that they do
not affect strongly the dependence of the cyclotron mass
on the temperature. In this case, the non-parabolicity of
the conduction band is responsible for the increase of the
cyclotron mass as a function of the temperature. Indeed,
the band non-parabolicity influences the position of the
energy levels and the electron has a lower transition en-
ergy than at high temperature (Eq. (51)). As pointed out
by Huant et al. [28] for a cyclotron resonance measure-
ment in quantum wells, the band non-parabolicity effects
become important because of the electric confinement
due to the band offset and magnetic field. Consequently,
the cyclotron mass is affected by the non-parabolicity of
the conduction band. At high temperatures T > 95 K
electron-LO(-IO)-phonon interactions become dominant
(see Figs. 1 and 2), that explains the decrease of the cy-
clotron resonance mass of magnetopolaron as the temper-
ature rises. This result is consistent with that of Wei and
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Fig. 4. Calculated peak cyclotron frequency � in
ZnCdSe/ZnSe multi-QWs versus the temperature for L =
90 Å and b = 150 Å.

Fig. 5. Cyclotron mass, obtained from the calculated magneto-
absorption spectra of polarons in ZnCdSe/ZnSe multi-QWs as
a function of the temperature for L = 90 Å and b = 150 Å.
The experimental data [9].

Kim [12] obtained using the Green’s function method. We
note that, in this range of the temperature, the polaron
effect prevails over the non-parabolicity of the conduction
band.

In Figure 5, the temperature dependence of the calcu-
lated cyclotron mass is plotted together with the experi-
mental data (solid dots) of reference [9]. Taking into ac-
count only the electron-confined LO-phonon interaction,
the cyclotron mass remains constant for T < 95 K but it
decreases when T > 95 K. This result is consistent with
other theoretical work [12] for high magnetic field. The
nonparabolicity of the conduction band has an important
impact especially at low temperatures. At high magnetic
field, the electron-IO phonon interaction reduces the val-
ues of cyclotron mass. The interplay between the electron-
LO(-IO)-phonon interaction and the non-parabolicity of
the conduction band determines this behavior of the cy-
clotron mass as a function of temperature. By comparing

with the experiment, we notice that the calculated cy-
clotron mass is in agreement with the experiment data for
ZnCdSe/ZnSe MQWs.

We expect that the inclusion of the screening effect
and the interaction of electrons with acoustic phonons,
via the deformation potential, in our model will improve
further the agreement between the calculation and the
experimental results.

4 Conclusion

With the use of the L.L.P variational method, we have
calculated the magnetopolaron cyclotron resonance mass
in ZnCdSe/ZnSe MQWs at a high magnetic field with
taking into account the nonparabolicity of the conduction
band and the interaction of an electron with both confined
LO- and IO-phonons. We show the theoretical tempera-
ture dependence of the cyclotron mass m*, obtained from
the position of the cyclotron resonance peak in the cal-
culated absorption spectra at �ω = 117 meV. The curve
m* versus T displays a rather well pronounced maximum
around T ≈ 95 K. The calculated cyclotron mass m*(T )
is in agreement with the experimental data [9]. This fact
provides support for our interpretation of the observed
non-monotonic temperature dependence of the cyclotron
mass at a high magnetic field as being caused by the in-
terplay between the electron-LO(-IO)-phonon interaction
and the non-parabolicity of the conduction band.
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